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Mid infrared quantum cascade lasers (QCLs) emitting in the 3-4 micron wavelength range have many potential applications 
in addition to sensitive gas detection since some gases have their strongest absorption features in this region. In this study, 
this type of QCL is intelligently modelled as a function of characteristic quantities (gain, refractive index change with 
injection current, linewidth enhancement factor) in terms of radial basis function network (RBFN). The single model results 
well matched with the experimental data reported elsewhere. 
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1. Introduction 
 

QCLs are unipolar devices that emit in the mid- to far-

infrared portion of the electromagnetic spectrum and it is 

rapidly developed after its first demonstration [1]. In 

addition to different type of application areas, they are 

going to use as ultra-high sensitivity gas detection. Since 

many important hydrocarbon species and some other 

molecules (hydrogen halides) have their have their 

maximum absorption features in 3-4 micron wavelength 

range, their detection sensitivities are also maximised. 

This property enables many potential applications such as 

clinical diagnostics, outdoor and indoor pollution control 

systems, process monitoring and remote detection of oil 

and gas deposits and concealed weapon detection systems 

[2-4]. As a consequence, these areas strongly benefit from 

this technological breakthrough. Therefore, a strong 

motivation is needed for highly accurate computer aided 

design (CAD) based models to design high performance 

sensing systems in order to optimise many parameters.  

The intelligent model consists of three inputs 

(characteristic quantities) which are differential gain, 

differential refractive index change with injection current 

and linewidth enhancement factor (LEF) [5-7]. Each 

quantity is obtained by lengthy and sophisticated 

mathematical calculations in addition to strong 

background knowledge. Understanding the gain spectra of 

a quantum cascade laser has crucial importance in order to 

develop a predictive capable model for the gain spectra. 

The refractive index change with injection current is also 

required for the characterization of QCLs which is 

similarly interrelated to the gain (Kramers-Kronig 

transformation), and robustly affects the distribution of 

inner cavity field. This change is mostly due to thermal 

heating as a consequence of current injection [8]. In 

addition to that, the measurement of the refractive index 

change with injection current is also difficult. The last 

quantity is the LEF which is strongly related to the QCL 

gain and enables information on the shape of gain. LEF is 

one of the key parameters for QCLs under both high-speed 

direct modulation and CW operation. The complexity is 

also well-known to measure the LEF as it dramatically 

changes with the operating wavelength, carrier density and 

other factors. 

In recent decades, Artificial Neural Networks (ANNs) 

are beginning to be used as a computer aided design 

(CAD) approach in modelling simulation and optimisation 

as attractive and serious alternatives to traditional 

techniques [9]. They are information processing systems 

inspired by the ability of the human brain in order to learn 

from observations and to generalize it by an intelligent 

behaviour. ANN based CAD models are fast, accurate and 

reliable through some processes called training and testing 

phases. Learning process is intelligently achieved in the 

learning process and reliable predictions and 

generalizations are performed in the testing stage.  ANNs 

have the ability to learn any arbitrary nonlinear input–

output relationships from corresponding data by building 

an approximator. Multilayer Perceptron Networks and 

Radial Basis Function Networks are the most commonly 

used feedforward ANNs as approximators [10]. These are 

widely used for function approximation, pattern 

classification and recognition because of their structural 

simplicity. 

QCL which belongs to type I has been previously 

modelled by using RBFN [11]. In this study, a candidate 

type II QCL for gas detection is modelled in terms of its 

characteristic quantities for different injection current and 

wavelength levels by using RBFN which is shown in Fig. 

1. The single model results provide highly accurate results 

for each characteristic quantity based on the experimental 

results which has been previously published [12].   
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Fig. 1. RBFN model of type II QCL. 

 

 

2. The proposed RBFN based model 
 

RBFN is one of the commonly used special types of 

ANN feed-forward networks trained using a supervised 

training algorithm that uses a radial basis function as its 

activation function. They are frequently used for function 

approximation, curve fitting, time series prediction, and 

classification problems. RBFN offers several distinctive 

features due to their universal approximation, compact 

topology and faster learning speed. Due to these 

fascinating features, they have attracted considerable 

attention and they have been widely applied in many 

science and engineering fields [13-17].   

To determine the optimal number of single hidden 

layer neurons is crucially important due to the network 

complexity and the generalization capability. In the case of 

insufficiency, the learning process cannot be achieved 

adequately. Conversely, it leads to weaken the 

generalization capability or overtraining (memorize 

instead of learning) although the error levels are 

considerably low [18]. Another factor is the position of the 

centres in the hidden layer which affects the network 

performance considerably [19]. In the hidden layer each 

neuron uses the Gaussian function which is the most 

favourite activation function. Afterwards, the optimization 

the SPREAD (RBF radius) parameter is achieved in the 

hidden layer [11]. Finally, the adjustments of the weights 

between the hidden layer and the output layer are 

performed in addition to the usage of linear activation 

function. The procedure is completed by adding the bias 

values to each output if necessary.  

The analytical details of the RBFN modelling are 

given in the article for type I QCL laser [11]. The model 

implementation starts with one neuron in hidden layer at a 

time by the iterative creation of a radial basis network. 

Neurons are added to the network until a maximum 

number of neurons have been reached or the sum-squared 

error falls beneath an error goal. The structure of RBFN 

model used in this study is showed in Fig. 1. As shown in 

the figure, three important type II QCL quantities are 

computed one at a time according to the different input 

values of injection currents and operating wavelengths. 

 

 

3. Results and conclusions 
 

The RBFN model is obtained for two different cases. 

In the first case, test phase is avoided because of the 

limited experimental data set which can be seen as a 

disadvantage. In this model the results are perfectly 

matched with the experimental data which indicates 

absolutely zero mean square error (MSE). In order to 

achieve a more realistic model second case is applied for 

four training data and the remaining three are left for the 

testing of the model. The graphs shown between Figs. 2-4 

indicates the second case for each characteristic quantity 

that presents the comparison of the RBFN model with the 

experimental values  

To illustrate the capability and flexibility of the 

proposed type II QCL model, the results are compared 

with the experimental values that show good agreement 

with the experimental values. This indicates the validation 

of the RBFN based proposed model. In addition to that, 

the simulation results confirm that all the characteristic 

quantities are computed in the order of milliseconds with a 

Pentium IV processor running at 3 GHz. This time interval 

implies the significant reduction in the computation time 

which all the characteristic quantities are computed at the 

same time.  This time interval can even be reduced more 

by using faster computer systems. 

The SPREAD constant should be large enough that 

neurons strongly respond to overlapping regions of the 

input space. Since there is no method to achieve the proper 

value of it, its value is tried in an interval to make sure that 

minimum MSE error is achieved. The SPREAD value is 

tried with 0.01 increments in the single type II QCL 

model. The minimal number of hidden neurons in the 

model is also computed (for minimum MSE) in order to 

avoid complexity of the network and to prevent from 

overtraining. Table 1 presents the model results for the 

second case by giving the optimised parameter values for 

minimum MSE error.   

 

 
Table 1. Optimal model results. 

 

SPREAD 0.73 

Total Train MSE  4.8960e-

24 

Total Test MSE  0.0037 

Number of hidden layer 16 

 

After obtaining the optimum RBFN architecture 

model, it is easy to compute the critical characteristic 

quantities at each operating point without requiring 

rigorous mathematics. The proposed model can be 

simulated by anyone with a personal computer for the 

estimation of these characteristic quantities without having 

any background knowledge of this kind of semiconductor 

lasers. The model results can also be extended to 

extrapolate more powerful designs at the whole spectrum 

for the quick simulation of such and similar systems.  
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Fig. 2. Comparison of RBFN model with the experimental  

values for Differential Gain. 

 

 

 
 

Fig. 3. Comparison of RBFN model with the experimental  

values for Differential Index Change. 

 

 

 
 

Fig. 4. Comparison of RBFN model with the experimental  

values for Linewidth Enhancement Factor. 
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